Insiemi finiti - Che cos'è, definizione e concetto

Gli insiemi finiti sono quelli la cui cardinalità, o numero di elementi in esso contenuti, è uguale a un numero naturale.

Un insieme finito, in altre parole, è un insieme che ha un numero di elementi che possono essere contati. Essendo l'opposto di un insieme infinito, dove gli elementi sono innumerevoli.

Un modo più formale di esprimere che un insieme è finito è che gli elementi di quell'insieme, che chiameremo M, possono essere accoppiati con gli elementi dell'insieme (1, 2,…, n), che chiameremo N. Questa è una sequenza di numeri interi in cui ogni elemento è uguale al precedente, più l'unità.

Pertanto, gli elementi di M e N possono essere accoppiati uno per uno (che è nota come corrispondenza biunivoca), senza tralasciare alcun elemento dei due insiemi.

Si dice anche che M e N sono equipotenti, cioè per ogni elemento di M esiste un elemento di N.

Inoltre, il numero n (l'elemento più grande dell'insieme N) coincide con il numero di elementi di M, dove n è il cardinale, la cardinalità o la potenza di N, e la sua notazione è carta (N), |N | o #N.

Esempi di insiemi finiti

Alcuni esempi di insiemi finiti sarebbero i seguenti:

  • Interi dispari maggiori di 13 e minori di 29: (15, 17, 19, 21, 23, 25, 27)
  • Gli oceani della Terra: Atlantico, Pacifico, Indiano, Artico, Antartico
  • L'elenco dei venti studenti che appartengono a una classe.

Proprietà degli insiemi finiti

Tra le principali proprietà degli insiemi finiti, ci sono quelle che vengono esposte di seguito:

  • L'unione di due o più insiemi finiti risulta in un insieme finito.
  • L'intersezione (gli elementi in comune) di un insieme finito con uno o più insiemi è finita.
  • Anche il sottoinsieme di un insieme finito è finito.
  • Il sottoinsieme C di un insieme finito M è caratterizzato dall'avere un numero di elementi minore di M. Vale a dire, è vero che: Se C ⊊ M e |M | = n, allora |C | <n (Il simbolo ⊊ significa che C è un sottoinsieme proprio di M. Cioè, tutti gli elementi di C sono contenuti in M, ma c'è almeno un elemento di M che non è in C).
  • L'insieme delle potenze di un insieme finito M, che include tutti i sottoinsiemi che possono essere formati con gli elementi dell'insieme M (incluso l'insieme vuoto o ∅), è finito e ha 2n elementi, dove n è il numero di elementi in M. Ad esempio, se abbiamo:

(1, 3, 41)

Il set di potenza sarebbe: (∅, (1,3), (1,41), (3,41), (1), (3), (41), (1,3,41))

Come possiamo vedere, l'insieme delle potenze di un insieme finito di tre elementi ha otto (23) elementi.

Messaggi Popolari

Audit esterno - Che cos'è, definizione e concetto

✅ Audit esterno | Che cos'è, significato, concetto e definizione. Un riassunto completo. L'audit esterno è una pratica comune nelle aziende e nelle istituzioni, in cui revisori professionisti di ...…

Relazioni internazionali: un passo verso un mondo più libero

Le relazioni internazionali sono, e sono state, uno dei pilastri fondamentali della società odierna. Le relazioni internazionali hanno consentito all'individuo maggiore libertà, sicurezza e pari opportunità. La globalizzazione ha portato con sé un'infinità di cambiamenti per le società e per l'economia stessa. Già dai nostri inizi in tuttoLeggi di più…

Audit - Che cos'è, definizione e concetto

Audit | Che cos'è, significato, concetto e definizione. Un riassunto completo. In ambito economico, auditing significa valutare e misurare in profondità le caratteristiche di un ...…