Modello autoregressivo (AR) - Che cos'è, definizione e concetto

I modelli di autoregressione, noti anche come modelli AR, vengono utilizzati per prevedere variabili ex-post (osservazioni di cui conosciamo appieno il valore) in determinati momenti nel tempo, normalmente ordinate cronologicamente.

I modelli autoregressivi, come suggerisce il nome, sono modelli che tornano su se stessi. Cioè, la variabile dipendente e la variabile esplicativa sono le stesse con la differenza che la variabile dipendente sarà in un momento successivo (t) rispetto alla variabile indipendente (t-1). Diciamo in ordine cronologico perché siamo attualmente al momento (t) del tempo. Se avanziamo di un periodo passiamo a (t + 1) e se torniamo indietro di un periodo andiamo a (t-1).

Poiché vogliamo fare una proiezione, la variabile dipendente deve sempre trovarsi almeno in un periodo di tempo più avanzato rispetto alla variabile indipendente. Quando vogliamo fare proiezioni usando l'autoregressione, la nostra attenzione deve concentrarsi sul tipo di variabile, sulla frequenza delle sue osservazioni e sull'orizzonte temporale della proiezione.

Sono popolarmente conosciuti come AR (p), dove p riceve l'etichetta 'ordine' ed è equivalente al numero di periodi che andremo a ritroso per eseguire la previsione della nostra variabile. Dobbiamo tenere in considerazione che più periodi torniamo indietro o più ordini assegniamo al modello, più potenziali informazioni appariranno nella nostra previsione.

Nella vita reale troviamo previsioni attraverso l'autoregressione nella proiezione delle vendite di un'azienda, previsioni sulla crescita del prodotto interno lordo (PIL) di un paese, previsioni su budget e tesoreria, ecc.

Modello di regressione

Stima e prognosi: risultato ed errore di un RA

La maggior parte della popolazione associa le previsioni al metodo dei minimi quadrati ordinari (OLS) e l'errore di previsione ai residui OLS. Questa confusione può causare seri problemi quando sintetizziamo le informazioni fornite dalle linee di regressione.

Differenza di risultato:

  • Stima: I risultati ottenuti con il metodo OLS sono calcolati dalle osservazioni presenti nel campione e sono stati utilizzati nella retta di regressione.
  • Previsione: le previsioni si basano su un periodo di tempo (t + 1) precedente al periodo di tempo delle osservazioni di regressione (t). I dati di previsione effettivi per la variabile dipendente non sono nel campione.

Differenza di errore:

  • Stima: i residui (u) ottenuti con il metodo OLS sono la differenza tra il valore reale della variabile dipendente (Y), YArticolo, e il valore stimato di (Y) dato dalle osservazioni del campione, ÝArticolo.

oArticolo = YArticolo - SìArticolo

Il pedice rappresenta l'i-esima osservazione nel periodo t.

  • Previsione: l'errore di previsione è la differenza tra il valore futuro (t + 1) di (Y), Yesso + 1, e la previsione per (Y) nel futuro (t + 1), Ýesso + 1. Il valore reale di (Y) per (t + 1) non appartiene al campione.

Errore di previsione = Yesso + 1 - Sìesso + 1

In sintesi, due dettagli da tenere a mente:

  1. Le stime ei residui appartengono alle osservazioni che sono all'interno del campione.
  2. Le previsioni ei loro errori appartengono ad osservazioni fuori campione.

Esempio teorico di un modello AR

Se vogliamo fare una previsione sul prezzo di skipass per la fine di questa stagione (t) in base ai prezzi della scorsa stagione (t-1), possiamo utilizzare il modello autoregressivo.

La nostra regressione autoregressiva sarebbe:

Questo modello autoregressivo appartiene ai modelli di autoregressione del primo ordine o più comunemente chiamati AR (1). Il significato dell'autoregressione è che la regressione viene eseguita sulla stessa variabile forfait ma in un diverso periodo di tempo (t-1 e t). Allo stesso modo, gli skipasst non nello skipass campionet-1.

In conclusione, l'interpretazione sarebbe tale che così. Se il prezzo degli abbonamenti è aumentato dell'1% nel periodo precedente, si prevede che nel periodo successivo aumenterà del B1%.

Messaggi Popolari

L'industria dei casinò online in Andalusia: cosa è successo nel 2019?

L'industria dei casinò è in pieno svolgimento in Spagna e nel mondo, e l'attività di gioco d'azzardo in Andalusia illustra pienamente queste circostanze. I casinò tradizionali stanno soppiantando il gioco d'azzardo virtuale, nell'ambito di un fenomeno mondiale che consiste nella virtualizzazione delle relazioni umane: così come è molto di piùLeggi di più…

Bitcoin Halving 2020: tutto quello che devi sapere

Durante i tuoi undici anni di storia, abbiamo assistito a due metà di Bitcoin, ed entrambe le volte il prezzo di Bitcoin è stato influenzato. Il dimezzamento del Bitcoin si verifica quando la velocità con cui vengono creati nuovi Bitcoin viene dimezzata, e ciò si verifica circa ogni 4 anni. È probabile che il prossimoLeggi di più…

Qual è la pensione massima e minima in Spagna nel 2019?

Se hai ancora dubbi sulla pensione di vecchiaia massima nel 2019 e sul minimo stabilito per la previdenza sociale in Spagna, ti diremo tutto ciò che devi sapere e i requisiti che devi soddisfare per riscuotere il massimo. Come molti sanno, le pensioni colpiscono milioni di persone in Spagna Leggi di più…